Module: FFTE

Defined in:
ffte.c

Defined Under Namespace

Classes: RadixError

Class Method Summary (collapse)

Class Method Details

+ (NArray::DComplex) dzfft2d(narray)

2-dimentional REAL-TO-COMPLEX FFT (Fast Fourier Transform) using Radix-2,3,4,5,8 FFT routine. Calculates on each last 2-dimention. FORWARD TRANSFORM.

Parameters:

  • narray (NArray::DFloat)

    >=2-dimentional REAL NArray.

    NArray::DFloat(.., NY, NX)
     NX = (2**IP) * (3**IQ) * (5**IR)
     NY = (2**JP) * (3**JQ) * (5**JR)

Returns:

  • (NArray::DComplex)

    Result COMPLEX narray:

    NArray::DComplex(.., NY, NX/2+1)

Raises:



589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
# File 'ffte.c', line 589

static VALUE
nary_ffte_dzfft2d(int argc, VALUE *args, VALUE mod)
{
    ndfunc_t *func;
    narray_t *na;
    volatile VALUE vres, vna;
    int ndim;
    integer iopt=0;
    dcomplex *b;
    integer n1,n2;
    size_t n=1;
    size_t shape[2];

    rb_scan_args(argc, args, "10", &vna);
    GetNArray(vna,na);
    ndim = NA_NDIM(na);
    if (ndim<2) {
        rb_raise(eRadixError,"ndim(=%d) should >= 2",ndim);
    }

    n1 = NA_SHAPE(na)[NA_NDIM(na)-1];
    n *= n1;

    shape[1] = n1/2+1;

    if (!is235radix(n1)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-1,shape[1]);
    }

    n2 = NA_SHAPE(na)[NA_NDIM(na)-2];
    n *= n2;

    shape[0] = n2;

    if (!is235radix(n2)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-2,shape[0]);
    }


    func = ndfunc_alloc(iter_fft_dzfft2d, NO_LOOP, 1, 1, cDFloat, cDComplex);
    func->args[0].dim = 2;
    func->args[1].dim = 2;
    func->args[1].aux.shape_p = shape;

    vna = na_copy(vna);
    b = ALLOC_N(dcomplex,n);

    dzfft2d_(NULL, &n1,&n2, &iopt, b);
    vres = ndloop_do3(func, b, 1, vna);
    ndfunc_free(func);
    xfree(b);

    return vres;
}

+ (NArray::DComplex) dzfft3d(narray)

3-dimentional REAL-TO-COMPLEX FFT (Fast Fourier Transform) using Radix-2,3,4,5,8 FFT routine. Calculates on each last 3-dimention. FORWARD TRANSFORM.

Parameters:

  • narray (NArray::DFloat)

    >=3-dimentional REAL NArray.

    NArray::DFloat(.., NZ, NY, NX)
     NX = (2**IP) * (3**IQ) * (5**IR)
     NY = (2**JP) * (3**JQ) * (5**JR)
     NZ = (2**KP) * (3**KQ) * (5**KR)

Returns:

  • (NArray::DComplex)

    Result COMPLEX narray:

    NArray::DComplex(.., NZ, NY, NX/2+1)

Raises:



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
# File 'ffte.c', line 696

static VALUE
nary_ffte_dzfft3d(int argc, VALUE *args, VALUE mod)
{
    ndfunc_t *func;
    narray_t *na;
    volatile VALUE vres, vna;
    int ndim;
    integer iopt=0;
    dcomplex *b;
    integer n1,n2,n3;
    size_t n=1;
    size_t shape[3];

    rb_scan_args(argc, args, "10", &vna);
    GetNArray(vna,na);
    ndim = NA_NDIM(na);
    if (ndim<3) {
        rb_raise(eRadixError,"ndim(=%d) should >= 3",ndim);
    }

    n1 = NA_SHAPE(na)[NA_NDIM(na)-1];
    n *= n1;

    shape[2] = n1/2+1;

    if (!is235radix(n1)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-1,shape[2]);
    }

    n2 = NA_SHAPE(na)[NA_NDIM(na)-2];
    n *= n2;

    shape[1] = n2;

    if (!is235radix(n2)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-2,shape[1]);
    }

    n3 = NA_SHAPE(na)[NA_NDIM(na)-3];
    n *= n3;

    shape[0] = n3;

    if (!is235radix(n3)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-3,shape[0]);
    }


    func = ndfunc_alloc(iter_fft_dzfft3d, NO_LOOP, 1, 1, cDFloat, cDComplex);
    func->args[0].dim = 3;
    func->args[1].dim = 3;
    func->args[1].aux.shape_p = shape;

    vna = na_copy(vna);
    b = ALLOC_N(dcomplex,n);

    dzfft3d_(NULL, &n1,&n2,&n3, &iopt, b);
    vres = ndloop_do3(func, b, 1, vna);
    ndfunc_free(func);
    xfree(b);

    return vres;
}

+ (NArray::DFloat) zdfft2d(narray)

2-dimentional COMPLEX-TO-REAL FFT (Fast Fourier Transform) using Radix-2,3,4,5,8 FFT routine. Calculates on each last 2-dimention. INVERSE TRANSFORM.

Parameters:

  • narray (NArray::DComplex)

    >=2-dimentional COMPLEX NArray.

    NArray::DComplex(.., NY, NX/2+1)
     NX = (2**IP) * (3**IQ) * (5**IR)
     NY = (2**JP) * (3**JQ) * (5**JR)

Returns:

  • (NArray::DFloat)

    Result REAL narray:

    NArray::DFloat(.., NY, NX)

Raises:



366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# File 'ffte.c', line 366

static VALUE
nary_ffte_zdfft2d(int argc, VALUE *args, VALUE mod)
{
    ndfunc_t *func;
    narray_t *na;
    volatile VALUE vres, vna;
    int ndim;
    integer iopt=0;
    dcomplex *b;
    integer n1,n2;
    size_t n=1;
    size_t shape[2];

    rb_scan_args(argc, args, "10", &vna);
    GetNArray(vna,na);
    ndim = NA_NDIM(na);
    if (ndim<2) {
        rb_raise(eRadixError,"ndim(=%d) should >= 2",ndim);
    }

    n1 = NA_SHAPE(na)[NA_NDIM(na)-1];
    n *= n1;

    shape[1] = (n1-1)*2;

    if (!is235radix(shape[1])) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-1,shape[1]);
    }

    n2 = NA_SHAPE(na)[NA_NDIM(na)-2];
    n *= n2;

    shape[0] =  n2;

    if (!is235radix(shape[0])) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-2,shape[0]);
    }


    func = ndfunc_alloc(iter_fft_zdfft2d, NO_LOOP, 1, 1, cDComplex, cDFloat);
    func->args[0].dim = 2;
    func->args[1].dim = 2;
    func->args[1].aux.shape_p = shape;

    vna = na_copy(vna);
    b = ALLOC_N(dcomplex,n);

    zdfft2d_(NULL, &n1,&n2, &iopt, b);
    vres = ndloop_do3(func, b, 1, vna);
    ndfunc_free(func);
    xfree(b);

    return vres;
}

+ (NArray::DFloat) zdfft3d(narray)

3-dimentional COMPLEX-TO-REAL FFT (Fast Fourier Transform) using Radix-2,3,4,5,8 FFT routine. Calculates on each last 3-dimention. INVERSE TRANSFORM.

Parameters:

  • narray (NArray::DComplex)

    >=3-dimentional COMPLEX NArray.

    NArray::DComplex(.., NZ, NY, NX/2+1)
     NX = (2**IP) * (3**IQ) * (5**IR)
     NY = (2**JP) * (3**JQ) * (5**JR)
     NZ = (2**KP) * (3**KQ) * (5**KR)

Returns:

  • (NArray::DFloat)

    Result REAL narray:

    NArray::DFloat(.., NZ, NY, NX)

Raises:



472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# File 'ffte.c', line 472

static VALUE
nary_ffte_zdfft3d(int argc, VALUE *args, VALUE mod)
{
    ndfunc_t *func;
    narray_t *na;
    volatile VALUE vres, vna;
    int ndim;
    integer iopt=0;
    dcomplex *b;
    integer n1,n2,n3;
    size_t n=1;
    size_t shape[3];

    rb_scan_args(argc, args, "10", &vna);
    GetNArray(vna,na);
    ndim = NA_NDIM(na);
    if (ndim<3) {
        rb_raise(eRadixError,"ndim(=%d) should >= 3",ndim);
    }

    n1 = NA_SHAPE(na)[NA_NDIM(na)-1];
    n *= n1;

    shape[2] = (n1-1)*2;

    if (!is235radix(shape[2])) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-1,shape[2]);
    }

    n2 = NA_SHAPE(na)[NA_NDIM(na)-2];
    n *= n2;

    shape[1] =  n2;

    if (!is235radix(shape[1])) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-2,shape[1]);
    }

    n3 = NA_SHAPE(na)[NA_NDIM(na)-3];
    n *= n3;

    shape[0] =  n3;

    if (!is235radix(shape[0])) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",
                 NA_NDIM(na)-3,shape[0]);
    }


    func = ndfunc_alloc(iter_fft_zdfft3d, NO_LOOP, 1, 1, cDComplex, cDFloat);
    func->args[0].dim = 3;
    func->args[1].dim = 3;
    func->args[1].aux.shape_p = shape;

    vna = na_copy(vna);
    b = ALLOC_N(dcomplex,n);

    zdfft3d_(NULL, &n1,&n2,&n3, &iopt, b);
    vres = ndloop_do3(func, b, 1, vna);
    ndfunc_free(func);
    xfree(b);

    return vres;
}

+ (NArray::DComplex) zfft1d(narray, [iopt])

1-dimentional COMPLEX FFT (Fast Fourier Transform) using Radix-2,3,4,5,8 FFT routine. Calculates on each last 1-dimention.

Parameters:

  • narray (NArray::DComplex)

    >=1-dimentional REAL NArray.

    NArray::DComplex(.., NX)
     NX = (2**IP) * (3**IQ) * (5**IR)
  • iopt (Numeric)

    Transform direction.

    -1 FOR FORWARD TRANSFORM
    +1 FOR INVERSE TRANSFORM

Returns:

  • (NArray::DComplex)

    Result COMPLEX narray:

    NArray::DComplex(.., NX)

Raises:



86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# File 'ffte.c', line 86

static VALUE
nary_ffte_zfft1d(int argc, VALUE *args, VALUE mod)
{
    ndfunc_t *func;
    narray_t *na;
    VALUE vres, vna, viopt=INT2NUM(1);
    int ndim;
    integer iopt=0;

    fft_opt_t *g;

    integer n1;

    rb_scan_args(argc, args, "11", &vna, &viopt);
    GetNArray(vna,na);
    ndim = NA_NDIM(na);
    if (ndim<1) {
        rb_raise(eRadixError,"ndim(=%d) should >= 1",ndim);
    }

    n1 = NA_SHAPE(na)[NA_NDIM(na)-1];
    if (!is235radix(n1)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",NA_NDIM(na)-1,n1);
    }


    func = ndfunc_alloc(iter_fft_zfft1d, NO_LOOP, 1, 0, cDComplex);
    func->args[0].dim = 1;

    vres = na_copy(vna);


    g = ALLOCA_N(fft_opt_t,1);
    g->b = ALLOC_N(dcomplex,n1*2);
    zfft1d_(NULL, &n1, &iopt, g->b);
    g->iopt = NUM2INT(viopt);
    ndloop_do3(func, g, 1, vres);
    xfree(g->b);


    ndfunc_free(func);

    return vres;
}

+ (NArray::DComplex) zfft2d(narray, [iopt])

2-dimentional COMPLEX FFT (Fast Fourier Transform) using Radix-2,3,4,5,8 FFT routine. Calculates on each last 2-dimention.

Parameters:

  • narray (NArray::DComplex)

    >=2-dimentional REAL NArray.

    NArray::DComplex(.., NY, NX)
     NX = (2**IP) * (3**IQ) * (5**IR)
     NY = (2**JP) * (3**JQ) * (5**JR)
  • iopt (Numeric)

    Transform direction.

    -1 FOR FORWARD TRANSFORM
    +1 FOR INVERSE TRANSFORM

Returns:

  • (NArray::DComplex)

    Result COMPLEX narray:

    NArray::DComplex(.., NY, NX)

Raises:



175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# File 'ffte.c', line 175

static VALUE
nary_ffte_zfft2d(int argc, VALUE *args, VALUE mod)
{
    ndfunc_t *func;
    narray_t *na;
    VALUE vres, vna, viopt=INT2NUM(1);
    int ndim;
    integer iopt=0;

    integer n1,n2;

    rb_scan_args(argc, args, "11", &vna, &viopt);
    GetNArray(vna,na);
    ndim = NA_NDIM(na);
    if (ndim<2) {
        rb_raise(eRadixError,"ndim(=%d) should >= 2",ndim);
    }

    n1 = NA_SHAPE(na)[NA_NDIM(na)-1];
    if (!is235radix(n1)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",NA_NDIM(na)-1,n1);
    }

    n2 = NA_SHAPE(na)[NA_NDIM(na)-2];
    if (!is235radix(n2)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",NA_NDIM(na)-2,n2);
    }


    func = ndfunc_alloc(iter_fft_zfft2d, NO_LOOP, 1, 0, cDComplex);
    func->args[0].dim = 2;

    vres = na_copy(vna);


    zfft2d_(NULL,  &n1,&n2, &iopt);
    iopt = NUM2INT(viopt);
    ndloop_do3(func, &iopt, 1, vres);


    ndfunc_free(func);

    return vres;
}

+ (NArray::DComplex) zfft3d(narray, [iopt])

3-dimentional COMPLEX FFT (Fast Fourier Transform) using Radix-2,3,4,5,8 FFT routine. Calculates on each last 3-dimention.

Parameters:

  • narray (NArray::DComplex)

    >=3-dimentional REAL NArray.

    NArray::DComplex(.., NZ, NY, NX)
     NX = (2**IP) * (3**IQ) * (5**IR)
     NY = (2**JP) * (3**JQ) * (5**JR)
     NZ = (2**KP) * (3**KQ) * (5**KR)
  • iopt (Numeric)

    Transform direction.

    -1 FOR FORWARD TRANSFORM
    +1 FOR INVERSE TRANSFORM

Returns:

  • (NArray::DComplex)

    Result COMPLEX narray:

    NArray::DComplex(.., NZ, NY, NX)

Raises:



267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# File 'ffte.c', line 267

static VALUE
nary_ffte_zfft3d(int argc, VALUE *args, VALUE mod)
{
    ndfunc_t *func;
    narray_t *na;
    VALUE vres, vna, viopt=INT2NUM(1);
    int ndim;
    integer iopt=0;

    integer n1,n2,n3;

    rb_scan_args(argc, args, "11", &vna, &viopt);
    GetNArray(vna,na);
    ndim = NA_NDIM(na);
    if (ndim<3) {
        rb_raise(eRadixError,"ndim(=%d) should >= 3",ndim);
    }

    n1 = NA_SHAPE(na)[NA_NDIM(na)-1];
    if (!is235radix(n1)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",NA_NDIM(na)-1,n1);
    }

    n2 = NA_SHAPE(na)[NA_NDIM(na)-2];
    if (!is235radix(n2)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",NA_NDIM(na)-2,n2);
    }

    n3 = NA_SHAPE(na)[NA_NDIM(na)-3];
    if (!is235radix(n3)) {
        rb_raise(eRadixError,"%d-th dim length(=%ld) is not 2,3,5-radix",NA_NDIM(na)-3,n3);
    }


    func = ndfunc_alloc(iter_fft_zfft3d, NO_LOOP, 1, 0, cDComplex);
    func->args[0].dim = 3;

    vres = na_copy(vna);


    zfft3d_(NULL,  &n1,&n2,&n3, &iopt);
    iopt = NUM2INT(viopt);
    ndloop_do3(func, &iopt, 1, vres);


    ndfunc_free(func);

    return vres;
}